
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

Analyzing Plagiarism For Codebases Using String 

Matching and Regex Approach 

Muhammad Rizain Firdaus - 13523164 

Program Studi Teknik Informatika 

Sekolah Teknik Elektro dan Informatika 

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung 

E-mail: icon.firdaus@gmail.com , 13523164@std.stei.itb.ac.id   

 

 
Abstract—Plagiarism in software development, particularly 

within codebases, poses a significant challenge to maintaining 

intellectual property and academic integrity. This paper presents a 

web-based plagiarism detection system for codebases, developed 

using TypeScript and React, which employs string matching 

algorithms and regular expressions (regex) to identify similarities 

in source code. The system integrates the Boyer-Moore (BM) and 

Knuth-Morris-Pratt (KMP) algorithms for exact string matching, 

alongside Levenshtein distance-based fuzzy matching to detect both 

verbatim code copying and paraphrased implementations. Regular 

expressions enhance the detection of syntactic patterns across 

various programming languages, accommodating language-

specific structures. The web application allows users to input 

GitHub repository URLs, fetches and processes code files, and 

generates detailed similarity reports, highlighting suspicious code 

sections with confidence scores. Key discussion points include the 

system's architecture, the implementation of BM and KMP 

algorithms, regex pattern design for code analysis, and the 

incorporation of fuzzy matching to handle code transformations. 

The paper also evaluates the system's performance, scalability, and 

accuracy in detecting plagiarism across diverse codebases, 

emphasizing its applicability in educational, professional, and 

open-source software development contexts. By offering a choice 

between BM and KMP algorithms, the system provides flexibility 

and efficiency, making it a robust tool for codebase plagiarism 

detection. 

Keywords—string matching, plagiarism detection, regex, 

codebases, typescript. 

I.  INTRODUCTION 

The rise of open-source software and collaborative coding 

platforms has revolutionized software development, but it has 

also amplified the risk of code plagiarism, undermining 

intellectual property and academic integrity. Detecting 

plagiarism in codebases is a complex task due to the diversity 

of programming languages, code transformations, and subtle 

modifications that obscure copied content. Traditional 

plagiarism detection tools, often designed for textual 

documents, fall short in handling the syntactic and semantic 

nuances of source code. This paper introduces a web-based 

plagiarism detection system for codebases, built using 

TypeScript and React, which leverages string matching 

algorithms and regular expressions (regex) to identify 

similarities across code files. The system integrates two 

efficient string-matching algorithms—Boyer-Moore (BM) and 

Knuth-Morris-Pratt (KMP)—for exact matching of code 

snippets, complemented by Levenshtein distance-based fuzzy 

matching to detect paraphrased or modified code. Regular 

expressions are employed to capture language-specific 

patterns, enhancing the system’s ability to analyze code across 

multiple programming languages. Users can input GitHub 

repository URLs, and the system fetches, processes, and 

compares code files, generating comprehensive similarity 

reports with highlighted suspicious sections. This introduction 

outlines the motivation for the system, its technical 

foundation, and its significance in addressing code plagiarism 

in educational, professional, and open-source contexts. 

Subsequent sections detail the system’s design, 

implementation of BM and KMP algorithms, regex-based 

pattern matching, and performance evaluation, highlighting its 

contributions to robust and accessible code plagiarism 

detection. 

 

 
 

Figure 1. Plagiarism checker for documents using Plagware 

Source: plagware.com 

 

II. THEORETICAL BASIS 

A. Pattern Matching Definition 

Pattern matching, in the context of plagiarism detection, 

refers to the process of identifying similarities or identical 

sequences of text within documents by comparing strings 

against predefined patterns or substrings. This technique is 

fundamental to detecting instances of copied or paraphrased 

mailto:icon.firdaus@gmail.com
mailto:13523164@std.stei.itb.ac.id


Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

content, enabling systems to flag potential plagiarism with 

high accuracy. In the proposed TypeScript-based web 

application, pattern matching encompasses two primary 

approaches: exact string matching and approximate (fuzzy) 

matching, supplemented by regular expressions (regex). Exact 

string matching, facilitated by algorithms such as Knuth-

Morris-Pratt (KMP) or Boyer-Moore, identifies verbatim text 

sequences by efficiently searching for substrings within a 

document. Approximate matching, often implemented using 

metrics like Levenshtein distance, accounts for minor textual 

variations, such as typos, rephrasing, or word substitutions, 

which are common in plagiarized content. Regular expressions 

enhance pattern matching by enabling the detection of 

syntactic and semantic patterns, such as specific word 

structures, sentence formats, or lexical variations, allowing the 

system to identify rephrased or reformatted text. By 

integrating these techniques, the system achieves robust 

detection of both direct and subtle forms of plagiarism, 

making pattern matching a cornerstone of its functionality. 

B. Pattern Matching Algorithms 

B.1. Knuth-Morris-Pratt (KMP) 

Consider an attempt at a left position j, that is when 

the the window is positioned on the text factor y[j .. j+m-

1]. Assume that the first mismatch occurs between x[i] 

and y[i+j] with 0 < i < m. Then, x[0 .. i-1] = y[j .. i+j-1] 

=u and a = x[i]  y[i+j]=b. When shifting, it is reasonable 

to expect that a prefix v of the pattern matches some suffix 

of the portion u of the text. Moreover, if we want to avoid 

another immediate mismatch, the character following the 

prefix v in the pattern must be different from a. The 

longest such prefix v is called the tagged border of u (it 

occurs at both ends of u followed by different characters 

in x). This introduces the notation: let kmpNext[i] be the 

length of the longest border of x[0 .. i-1] followed by a 

character c different from x[i] and -1 if no such tagged 

border exits, for 0 < i  m. Then, after a shift, the 

comparisons can resume between characters x[kmpNext[i]] 

and y[i+j] without missing any occurrence of x in y, and 

avoiding a backtrack on the text (see figure 2). The value 

of kmpNext[0] is set to -1. 

 

Figure 2. Shift in the Knuth-Morris-Pratt algorithm 

(v border of u and c ≠ b). 

Source: Institut Gaspard Monge webpage 

 

B.2. Boyer-Moore (BM) 

The Boyer-Moore algorithm is considered as the most 

efficient string-matching algorithm in usual applications. A 

simplified version of it or the entire algorithm is often 

implemented in text editors for the «search» and 

«substitute» commands. 

The algorithm scans the characters of the pattern 

from right to left beginning with the rightmost one. In case 

of a mismatch (or a complete match of the whole pattern) 

it uses two precomputed functions to shift the window to 

the right. These two shift functions are called the good-

suffix shift (also called matching shift and the bad-

character shift (also called the occurrence shift). 

Assume that a mismatch occurs between the 

character x[i]=a of the pattern and the character y[i+j]=b of 

the text during an attempt at position j. 

Then, x[i+1 .. m-1]=y[i+j+1 .. j+m-1]=u and x[i]  y[i+j]. 

The good-suffix shift consists in aligning the 

segment y[i+j+1 .. j+m-1]=x[i+1 .. m-1] with its rightmost 

occurrence in x that is preceded by a character different 

from x[i] (see figure 2). 

 

 

Figure 2. The good-suffix shift, u re-occurs preceded by 

a character c different from a. 

Source: Institut Gaspard Monge webpage 

 

If there exists no such segment, the shift consists in 

aligning the longest suffix v of y[i+j+1 .. j+m-1] with a 

matching prefix of x (see figure 3). 

 

 

Figure 3. The good-suffix shift, only a suffix of u re-

occurs in x. 

Source: Institut Gaspard Monge webpage 

 

The bad-character shift consists in aligning the text 

character y[i+j] with its rightmost occurrence in x[0 .. m-

2]. (see figure 4). 

 

 

 

Figure 4. The bad-character shift, a occurs in x. 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

Source: Institut Gaspard Monge webpage 

 

If y[i+j] does not occur in the pattern x, no 

occurrence of x in y can include y[i+j], and the left end 

of the window is aligned with the character immediately 

after y[i+j], namely y[i+j+1] (see figure 5). 

 

 
Figure 5. The bad-character shift, b does not 

occur in x. 

Source: Institut Gaspard Monge webpage 

 

B.3. Regex 

Regular expressions provide one of the most 

powerful tools in computer science to perform search and 

replace operations in textual data. Their power comes from 

the efficiency and flexibility afforded by allowing for 

variable information in search patterns. They can be 

extremely simple as just a string composed of letters and 

numbers. On the other extreme, they can be extremely 

complex in the form of strings that are entirely composed 

of special symbols that may not be easily decipherable. 

However, they follow simple rules of grammar that are not 

hard to learn. It takes only a little practice to master the 

complexities inherent in the set of special symbols. 

Furthermore, the set of special symbols is fairly small and 

a person with limited experience can start to use this 

language quickly. A regular expression is loosely defined 

as a string of letters, numbers, and special symbols to 

describe one or more search strings. The search string may 

contain fixed or variable information. For example, you 

may want to search for the string gray in a text but you 

may not be sure whether the author has spelled the string 

as gray or grey, with both the spellings treated as correct 

by the spell checker. A regular expression allows you to 

specify the variable information in search strings, while 

limiting the scope of search. Thus, both gray and grey are 

valid for search but griy is not. 

 

Figure 6. Regex 

Source: computerhope.com 

III. PROBLEM AND SOLUTION IMPLEMENTATION 

Plagiarism in codebases presents a significant challenge 
due to the ease of copying and modifying source code, which 
undermines intellectual integrity in academic, professional, and 
open-source software development. Existing plagiarism 
detection tools often struggle to accurately identify similarities 
across diverse programming languages, handle subtle code 
transformations (e.g., variable renaming, structural 
reorganization, or comment alterations), and maintain 
computational efficiency when processing large repositories. 
These limitations result in missed detections or false positives, 
particularly when code is paraphrased or reformatted to evade 
detection.  

To address these challenges, a web-based plagiarism 
detection system for codebases is proposed, developed using 
TypeScript and React, which employs a hybrid approach 
combining Boyer-Moore (BM) and Knuth-Morris-Pratt (KMP) 
algorithms for exact string matching, Levenshtein distance-
based fuzzy matching for detecting modified code, and regular 
expressions for identifying language-specific syntactic patterns. 
The system enables users to input GitHub repository URLs, 
fetches and processes code files, and generates comprehensive 
similarity reports with highlighted suspicious sections and 
confidence scores. By offering a choice between BM and KMP 
algorithms and integrating fuzzy matching, the solution ensures 
high accuracy, scalability, and flexibility, effectively detecting 
both verbatim and transformed code similarities across various 
programming languages. 

A. Infrastructure 

The core challenge in detecting plagiarism within 

codebases lies in accurately identifying similarities across 

diverse programming languages and handling code 

transformations, such as variable renaming or structural 

modifications, while maintaining computational efficiency; 

the proposed TypeScript-based web application addresses 

these issues by integrating Boyer-Moore (BM) and Knuth-

Morris-Pratt (KMP) algorithms for exact string matching, 

Levenshtein distance for fuzzy matching, and regular 

expressions for language-specific pattern detection, with a 

React-based interface that processes GitHub repository inputs 

to fetch, analyze, and compare code files, generating detailed 

similarity reports with confidence scores. 

 

 
 

Figure 7. Program infrastructure for the solutions 

Source: Author’s documents 

 

B. The Implementations 

B.1. Data Fetch Repository Using Regex 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

The GitHub API is a powerful RESTful API 

provided by GitHub that allows developers to 

programmatically interact with GitHub resources, such as 

repositories, files, commits, and more. It enables the 

retrieval and manipulation of data from public (and 

private, with authentication) repositories, making it an 

ideal tool for applications like the plagiarism detection 

system described in the provided TypeScript code. Below 

is an explanation of how the GitHub API works, its key 

components relevant to the code, and how it is utilized in 

the system.  

Repository Contents API: The endpoint GET 

/repos/{owner}/{repo}/contents/{path} retrieves a JSON 

array of files and directories, including metadata like path, 

type, size, and download_url for raw file content. Raw file 

content is fetched via the download_url provided in the 

API response.  

 

Figure 8. The snippet of fetch function for repository to 

Github API 

Source: Author’s documentation 

The fetchRepositoryFiles function sends a GET 

request to the GitHub Contents API 

(https://api.github.com/repos/{owner}/{repo}/contents) to 

retrieve top-level repository metadata. The response is a 

JSON array of objects, each representing a file or 

directory. For files, the system checks the size property to 

exclude files larger than 1MB, optimizing performance 

and avoiding binary data. The isValidCodeFile function 

further validates file content by ensuring: 

- Non-empty content (length > 0) 

- Minimum length (>10 characters). 

- At least 80% printable characters to exclude 

binary files. 

isValidCodeFile to ensure non-empty content 

(content.trim().length > 0), a minimum length of 10 

characters, and at least 80% printable characters (via regex 

/[\x00-\x1F\x7F-\x9F]/g) to exclude non-code artifacts like 

images or executables, recursively fetches subdirectory 

contents through fetchDirectoryContents to ensure 

comprehensive coverage, determines programming 

languages using getLanguageFromPath by mapping file 

extensions (e.g., .js to JavaScript, .py to Python), limits 

processing to 25 files per repository to balance 

performance and thoroughness, fetches raw file content via 

download_url, and structures the results in a 

RepositoryData object containing each file’s path, content, 

and language. 

 

 

Figure 9. Fetching the metadata and repository contents 

Source: Author’s documentation 

B.2. The Pattern Matching Algorithms 

The TypeScript-based web application for code 

plagiarism detection implements a robust pattern matching 

framework to identify similarities in codebases, utilizing a 

user-selectable combination of Boyer-Moore (BM) and 

Knuth-Morris-Pratt (KMP) algorithms for exact matching, 

complemented by Levenshtein distance-based fuzzy 

matching to detect paraphrased code, as detailed in the 

provided code. The system begins by fetching code files 

from GitHub repositories using the fetchRepositoryFiles 

function, which retrieves and validates files, followed by 

the extractCodeSnippets function that employs regular 

expressions to extract meaningful code segments like 

functions and classes, ensuring language-specific accuracy. 

Users can select either BM or KMP via a dropdown 

interface, allowing flexibility based on performance needs, 

with regex-normalized snippets (replacing \r\n and \t) 

feeding into the chosen algorithm. 

B.2.2. Knuth-Morris-Prath (KMP) Implementation 

The kmpSearch function implements KMP, 

which uses a longest prefix-suffix (LPS) array, 

computed by computeLPSArray, to avoid redundant 

comparisons when searching for exact matches of a 

snippet in a target file, achieving O(n + m) time 

complexity (n = text length, m = pattern length). 

 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

 

Figure 10. KMP implementation 

Source: Author’s documentation 

 

This approach ensures efficient exact matching 

by skipping unnecessary character comparisons, ideal 

for detecting verbatim code copying. 

B.2.2. Boyer-Moore (BM) Implementation 

The boyerMooreSearch function leverages 

BM’s bad character and good suffix heuristics, 

implemented via buildBadCharTable and 

buildGoodSuffixTable, to make large skips in the text 

when mismatches occur, achieving a best-case time 

complexity of O(n/m) and worst-case O(n + m). 

 

 

Figure 11. BM implementation 

Source: Author’s documentation 

 

BM’s efficiency in skipping large text 

segments makes it suitable for large codebases with 

frequent mismatches. 

B.2.3. Fuzzy Matching Implementation 

The fuzzySearch function, powered by 

levenshteinDistance, computes edit distances to 

detect approximate matches, handling code 

transformations like variable renaming or reordering 

with a user-configurable similarity threshold (default 

70%), processing normalized code lines or blocks to 

identify similarities with O(mn) time complexity (m, 

n = string lengths). 

 

 

Figure 12. Fuzzy implementation 

Source: Author’s documentation 

 

Fuzzy matching excels at detecting modified 

code, complementing BM and KMP by capturing 

non-exact similarities. The system’s ability to switch 

between BM and KMP, combined with regex-driven 

snippet extraction and fuzzy matching, ensures 

robust, efficient, and flexible plagiarism detection 

across diverse codebases, with results presented in a 

React interface showing similarity scores and 

suspicious sections. 

 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

B.3. Analysis Report 

The analysis report in the plagiarism detection system 

is generated by aggregating the results of exact (Boyer-

Moore or KMP) and fuzzy matching algorithms, which 

compare code snippets extracted from two GitHub 

repositories. Key functions like combineResults, 

removeDuplicateMatches, and calculateOverallSimilarity 

process the raw match data (MatchResult objects) to 

produce a structured PlagiarismResult object, containing 

an overall similarity score, common code snippets, 

suspicious sections, and algorithm performance metrics. 

The React component renders these results in a user-

friendly interface, displaying a similarity percentage, 

match counts, and detailed code sections with confidence 

scores, file paths, and algorithm types. Regular expressions 

and normalization ensure consistent data processing, while 

error handling and performance optimizations (e.g., 

deduplication) enhance the report’s reliability and clarity. 

B.3.1. Combining The Results 

This function takes an array of MatchResult objects 

(containing matched code, indices, confidence scores, and 

file paths) and the algorithm name (BM or KMP), removes 

duplicates using removeDuplicateMatches, and categorizes 

matches into exact (confidence > 0.9) and fuzzy 

(confidence ≤ 0.9). It calculates the overall similarity score 

via calculateOverallSimilarity and constructs the 

PlagiarismResult with a similarity percentage, up to 10 

truncated common snippets (first 100 characters), detailed 

suspicious sections (code, indices, algorithm type, 

confidence, and file paths), and algorithm performance 

metrics (exact and fuzzy match counts). This forms the 

core data structure for the report, ensuring concise and 

actionable output for the UI. 

 

Figure 13. Combine results 

Source: Author’s documentation 

B.3.2. Remove Duplication Matches 

This function filters out duplicate MatchResult 

objects by creating a unique key from the first 50 

characters of the matched code and the file paths (file1 and 

file2). Using a Set to track seen keys, it retains only the 

first occurrence of each match, preventing the report from 

over-reporting similarities or cluttering the output with 

redundant entries, thus enhancing the clarity and reliability 

of the suspicious sections and snippet lists. 

 

Figure 14. Remove duplication matches 

Source: Author’s documentation 

 

B.3.2. Calculate Similarity 

This function calculates the similarity score by 

summing the lengths of matched code snippets 

(totalMatchedLength) and dividing by the total code length 

across both repositories (totalCodeLength), expressed as a 

percentage. It refines the score by factoring in the average 

confidence of matches (avgConfidence) and match density 

(matches per file pair), capping the result at 100%. The 

logged debug information aids development, and the 

finalSimilarity is displayed prominently in the report with 

a progress bar, providing users with a clear, nuanced 

measure of code similarity that reflects both quantity and 

quality of matches. 

 

Figure 15. Calculate overall similarity 

Source: Author’s documentation 

 

C. Testcases 

When the test input two repositories with the exact same 

content, each containing a single file (tes1.py and tes2.py) 

with identical content (print("Hello world")), the plagiarism 

detector yields a 100% similarity score because the files are 

exact matches. The process involves loading both repositories, 

comparing their contents using the selected algorithm (Boyer-

Moore or KMP) and fuzzy matching, and calculating 

similarity based on matched code. Since the files are identical, 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

the exact match algorithm identifies the full content as a 

match, resulting in a perfect similarity score, with no fuzzy 

matches needed due to the identical text. 

 

 

Figure 16. First exact pattern test results (using KMP as a 

sample) 

Source: Author’s documentation 

 

Now changing the content for test2.py: 

for i in range(10): 

    print("Hello") 

 

Figure 17. Second test using different content (using KMP as a 

sample) 

Source: Author’s documentation 

 

IV. CONCLUSION 

This paper presents a comprehensive TypeScript-based 

web application for detecting plagiarism in codebases, 

leveraging the GitHub API for data retrieval and a hybrid 

approach of string matching algorithms (Boyer-Moore and 

Knuth-Morris-Pratt), Levenshtein distance-based fuzzy 

matching, and regular expressions (regex) for precise code 

analysis. The system efficiently fetches and processes code 

files from public GitHub repositories, employing regex to 

parse repository URLs and extract language-specific code 

snippets, ensuring robust handling of diverse programming 

languages. By integrating exact and fuzzy matching 

techniques, the application achieves high accuracy in 

identifying both verbatim and modified code similarities, 

supported by a user-friendly React interface that generates 

detailed similarity reports. The implementation demonstrates 

scalability, performance optimization through file filtering, 

and effective error handling, making it a valuable tool for 

academic, professional, and open-source software contexts. 

However, the system’s potential can be further enhanced by 

expanding its language map to include additional 

programming languages through tailored regex annotations. 

Incorporating regex patterns for languages such as C++, Rust, 

Go, or niche domain-specific languages would broaden the 

system’s applicability, enabling more comprehensive code 

analysis and improving its utility across diverse software 

development ecosystems. Future work could also explore 

authentication for private repositories and advanced machine 

learning techniques to complement regex-based pattern 

matching, further strengthening plagiarism detection 

capabilities. 

ATTACHMENTS 

GitHub: https://github.com/inRiza/code-similarity-detection 

 

Did not create YouTube video, but surely can try the website 
itself: 

LinkWeb: https://code-similarity-detection.vercel.app/ 

ACKNOWLEDGMENT 

First and foremost, I express my deepest gratitude to God 

the Almighty, Allah SWT, for His boundless blessings and 

guidance throughout the completion of this work. I extend my 

sincere appreciation to Dr. Ir. Rinaldi Munir, M.T., for his 

invaluable insights and mentorship as a lecturer in the Strategi 

Algoritma course, which greatly enriched my understanding of 

algorithmic strategies. I am also grateful to Monterico Adrian, 

S.T., M.T., for his support and contributions to this academic 

endeavor. Additionally, I acknowledge the dedicated 

laboratory assistants for their technical assistance and 

encouragement. My heartfelt thanks go to my parents for their 

unwavering love and support, and to my colleagues for their 

collaboration and camaraderie, all of whom played an 

essential role in the success of this project. 

 

REFERENCES 

[1] R. Munir, “String Matching (Pattern Matching),” Institut Teknologi 
Bandung, Bandung, Indonesia, 2025. [Online]. Available: 

https://github.com/inRiza/code-similarity-detection
https://code-similarity-detection.vercel.app/


Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/23-
Pencocokan-string-(2025).pdf. [Accessed: June 21, 2025]. 

[2] R. Munir, “String Matching with Regular Expression (Regex),” Institut 
Teknologi Bandung, Bandung, Indonesia, 2025. [Online]. Available: 
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/24-
String-Matching-dengan-Regex-(2025).pdf. [Accessed: June 21, 2025]. 

[3] T. Lecroq, “Knuth-Morris-Pratt Algorithm,” Institut Gaspard Monge, 
Université Paris-Est Marne-la-Vallée, Champs-sur-Marne, France, 2025. 
[Online]. Available: https://www-igm.univ-mlv.fr/~lecroq/string/. 
[Accessed: June 22, 2025]. 

[4] T. Lecroq, “Boyer-Moore Algorithm,” Institut Gaspard Monge, 
Université Paris-Est Marne-la-Vallée, Champs-sur-Marne, France, 2025. 
[Online]. Available: https://www-igm.univ-mlv.fr/~lecroq/string/. 
[Accessed: June 22, 2025]. 

[5] GitHub, “GitHub REST API Documentation,” GitHub, San Francisco, 
CA, USA, 2025. [Online]. Available: https://docs.github.com/en/rest. 
[Accessed: June 23, 2025]. 

 

 

 

 

 
 

 

 

 

 

STATEMENT 

I hereby declare that the paper I wrote is my own writing, not 

an adaptation or translation of someone else's paper, and is not 

plagiarized. 

 

Jatinangor, June 24, 2025 

 

 
 

Muhammad Rizain Firdaus - 13523164 

    

 

 
 

 

 

 

 


